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Part I

UNIVARIATE STABLE
DISTRIBUTIONS

1





1
Basic Properties of Univariate Stable
Distributions

Stable distributions are a rich class of probability distributions that allow skewness and
heavy tails and have many intriguing mathematical properties. The class was characterized
by Paul Lévy in his study of sums of independent identically distributed terms in the 1920’s.
The lack of closed formulas for densities and distribution functions for all but a few stable
distributions (Gaussian, Cauchy and Lévy, see Figure 1.1), has been a major drawback to
the use of stable distributions by practitioners. There are now reliable computer programs
to compute stable densities, distribution functions and quantiles. With these programs, it is
possible to use stable models in a variety of practical problems.

This book describes the basic facts about univariate and multivariate stable distributions,
with an emphasis on practical applications. Part I focuses on univariate stable laws. This
chapter describes basic properties of univariate stable distributions. Chapter 2 gives ex-
amples of stable laws arising in different problems. Chapter 3 gives proofs of the results in
this chapter, as well as more technical details about stable distributions. Chapter 4 describes
methods of fitting stable models to data. This structure is continued in Part II, which con-
cerns multivariate stable laws. Chapters 5, 6, and 7 give basic facts about multivariate stable
distributions, proofs and technical results, and estimation respectively. Part III is about sta-
ble regression, stable times series, and general stable processes. At the end of the book, Part
IV describes related distributions and the appendices give tables of stable quantiles, modes
and asymptotic standard deviations of maximum likelihood estimators of stable parameters.

Stable distributions have been proposed as a model for many types of physical and eco-
nomic systems. There are several reasons for using a stable distribution to describe a sys-
tem. The first is where there are solid theoretical reasons for expecting a non-Gaussian
stable model, e.g. reflection off a rotating mirror yielding a Cauchy distribution, hitting
times for a Brownian motion yielding a Lévy distribution, the gravitational field of stars
yielding the Holtsmark distribution; see Feller (1971) and Uchaikin and Zolotarev (1999)
for these and other examples. The second reason is the Generalized Central Limit Theo-
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rem which states that the only possible non-trivial limit of normalized sums of independent
identically distributed terms is stable. It is argued that some observed quantities are the
sum of many small terms - the price of a stock, the noise in a communication system, etc.
and hence a stable model should be used to describe such systems. The third argument for
modelling with stable distributions is empirical: many large data sets exhibit heavy tails and
skewness. The strong empirical evidence for these features combined with the Generalized
Central Limit Theorem is used by many to justify the use of stable models. Examples in
finance and economics are given in Mandelbrot (1963), Fama (1965), Samuelson (1967),
Roll (1970), Embrechts et al. (1997), Rachev and Mittnik (2000), McCulloch (1996); in
communication systems by Stuck and Kleiner (1974), Zolotarev (1986), and Nikias and
Shao (1995). Such data sets are poorly described by a Gaussian model, but can be well
described by a stable distribution.

Several recent monographs focus on stable models: Zolotarev (1986), Uchaikin and
Zolotarev (1999), Christoph and Wolf (1992), Samorodnitsky and Taqqu (1994), Janicki
and Weron (1994), and Nikias and Shao (1995). The related topic of modelling with the
extremes of data and heavy tailed distributions is discussed in Embrechts et al. (1997),
Adler et al. (1998), and in Reiss and Thomas (2001).

1.1 Definition of stable

An important property of normal or Gaussian random variables is that the sum of two of
them is itself a normal random variable. One consequence of this is that if X is normal, then
for X1 and X2 independent copies of X and any positive constants a and b,

aX1 +bX2
d=cX +d, (1.1)

for some positive c and some d ∈ R. (The symbol d= means equality in distribution, i.e.
both expressions have the same probability law.) In words, equation (1.1) says that the
shape of X is preserved (up to scale and shift) under addition. This book is about the class
of distributions with this property.

Definition 1.1 A random variable X is stable or stable in the broad sense if for X1 and X2
independent copies of X and any positive constants a and b, (1.1) holds for some positive
c and some d ∈ R. The random variable is strictly stable or stable in the narrow sense if
(1.1) holds with d = 0 for all choices of a and b. A random variable is symmetric stable if
it is stable and symmetrically distributed around 0, e.g. X d=−X .

The addition rule for independent normal random variables says that the mean of the
sum is the sum of the means and the variance of the sum is the sum of the variances.
Suppose X ∼ N(µ,σ2), then the terms on the left hand side above are N(aµ,(aσ)2) and
N(bµ,(bσ)2) respectively, while the right hand side is N(cµ + d,(cσ)2). By the addition
rule one must have c2 = a2 +b2 and d = (a+b−c)µ . Expressions for c and d in the general
stable case are given below.

The word stable is used because the shape is stable or unchanged under sums of the type
(1.1). Some authors use the phrase sum stable to emphasize the fact that (1.1) is about a sum
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and to distinguish between these distributions and max-stable, min-stable, multiplication
stable and geometric stable distributions (see Chapter 13). Also, some older literature used
slightly different terms: stable was originally used for what we now call strictly stable,
quasi-stable was reserved for what we now call stable.

Two random variables X and Y are said to be of the same type if there exists constants
A > 0 and B ∈ R with X d=AY + B. The definition of stability can be restated as aX1 + bX2
has the same type as X .

There are three cases where one can write down closed form expressions for the den-
sity and verify directly that they are stable - normal, Cauchy and Lévy distributions. The
parameters α and β mentioned below are defined in Section 1.3.

Example 1.2 Normal or Gaussian distributions. X ∼ N(µ,σ2) if it has a density

f (x) =
1√

2πσ
exp

(
−(x−µ)2

2σ2

)
, −∞ < x < ∞.

The cumulative distribution function, for which there is no closed form expression, is
F(x) = P(X ≤ x) = Φ((x−µ)/σ), where Φ(z) = probability that a standard normal r.v. is
less than or equal z. Problem 1.1 shows a Gaussian distribution is stable with parameters
α = 2, β = 0. 2

Example 1.3 Cauchy distributions. X ∼ Cauchy(γ,δ ) if it has density

f (x) =
1
π

γ
γ2 +(x−δ )2 −∞ < x < ∞.

These are also called Lorentz distributions in physics. Problem 1.2 shows a Cauchy distri-
bution is stable with parameters α = 1, β = 0 and Problem 1.4 gives the d.f. of a Cauchy
distribution. 2

Example 1.4 Lévy distributions. X ∼ Lévy(γ,δ ) if it has density

f (x) =
√

γ
2π

1
(x−δ )3/2 exp

(
− γ

2(x−δ )

)
, δ < x < ∞.

Note that some authors use the term Lévy distribution for all sum stable laws; we shall only
use it for this particular distribution. Problem 1.3 shows a Cauchy distribution is stable with
parameters α = 1/2, β = 1 and Problem 1.17 gives the d.f. of a Lévy distribution. 2

Figure 1.1 shows a plot of these three densities. Both normal distributions and Cauchy
distributions are symmetric, bell-shaped curves. The main qualitative distinction between
them is that the Cauchy distribution has much heavier tails, see Table 1.1. In particular,
there is a tiny amount of probability above 3 for the normal distribution, but a significant
amount above 3 for a Cauchy. In a sample of data from these two distributions, there will
be (on average) more than 100 times as many values above 3 in the Cauchy case than in
the normal case. This is the reason stable distributions are called heavy tailed. In contrast
to the normal and Cauchy distributions, the Lévy distribution is highly skewed, with all
of the probability concentrated on x > 0, and it has even heavier tails than the Cauchy.
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Figure 1.1: Graphs of standardized normal N(0,1), Cauchy(1,0) and Lévy(1,0) densities.

c P(X > c)
Normal Cauchy Lévy

0 0.5000 0.5000 1.0000
1 0.1587 0.2500 0.6827
2 0.0228 0.1476 0.5205
3 0.001347 0.1024 0.4363
4 0.00003167 0.0780 0.3829
5 0.0000002866 0.0628 0.3453

Table 1.1: Comparison of tail probabilities for standard normal, Cauchy and Lévy distribu-
tions.

General stable distributions allow for varying degrees of tail heaviness and varying degrees
of skewness.

Other than the normal distribution, the Cauchy distribution, the Lévy distribution, and the
reflection of the Lévy distribution, there are no known closed form expressions for general
stable densities and it is unlikely that any other stable distributions have closed forms for
their densities. Zolotarev (1986) (pg. 155-158) shows that in a few cases stable densities or
distribution functions are expressible in terms of certain special functions. This may seem
to doom the use of stable models in practice, but recall that there is no closed formula
for the normal cumulative distribution function. There are tables and accurate computer
algorithms for the standard normal distribution function, and people routinely use those
values in normal models. We now have computer programs to compute quantities of interest
for stable distributions, so it is possible to use them in practical problems.
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1.2 Other definitions of stable

There are other equivalent definitions of stable random variables. Two are stated here, the
proof of the equivalence of these definitions are given in Section 3.1.

Definition 1.5 Non-degenerate X is stable if and only if for all n > 1, there exist constants
cn > 0 and dn ∈ R such that

X1 + · · ·+Xn
d=cnX +dn,

where X1, . . . ,Xn are independent, identical copies of X . X is strictly stable if and only if
dn = 0 for all n.

Section 3.1 shows that the only possible choice for the scaling constants is cn = n1/α for
some α ∈ (0,2]. Both the original definition of stable and the one above use distributional
properties of X , yet another distributional characterization is given by the Generalized Cen-
tral Limit Theorem, Theorem 1.20. While useful, these conditions do not give a concrete
way of parameterizing stable distributions. The most concrete way to describe all possi-
ble stable distributions is through the characteristic function or Fourier transform. (For a
random variable X with distribution function F(x), the characteristic function is defined
by φ(u) = E exp(iuX) =

∫ ∞
−∞ exp(iux)dF(x). The function φ(u) completely determines the

distribution of X and has many useful mathematical properties, see Appendix A.) The sign
function is used below, it is defined as

signu =

{−1 u < 0
0 u = 0
1 u > 0.

In the expression below for the α = 1 case, 0 · log0 is always interpreted as 0.

Definition 1.6 A random variable X is stable if and only if X d=aZ + b, where 0 < α ≤ 2,
−1≤ β ≤ 1, a > 0, b ∈ R and Z is a random variable with characteristic function

E exp(iuZ) =
{

exp(−|u|α [1− iβ tan πα
2 (signu)]) α 6= 1

exp(−|u| [1+ iβ 2
π (signu) log |u|]) α = 1. (1.2)

These distributions are symmetric around zero when β = 0 and b = 0, in which case the
characteristic function of aZ has the simpler form

φ(u) = e−aα |u|α .

Problems 1.1, 1.2 and 1.3 show that a N(µ,σ2) distribution is stable with (α = 2,β = 0,a =
σ/
√

2,b = µ), a Cauchy(γ,δ ) distribution is stable with (α = 1,β = 0,a = γ,b = δ ) and
a Lévy(γ,δ ) distribution is stable with (α = 1/2,β = 1,a = γ,b = δ ).

1.3 Parameterizations of stable laws

Definition 1.6 shows that a general stable distribution requires four parameters to describe:
an index of stability or characteristic exponent α ∈ (0,2], a skewness parameter β ∈ [−1,1],
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a scale parameter γ > 0 and a location parameter δ ∈R. We will use γ for the scale param-
eter and δ for the location parameter to avoid confusion with the symbols σ and µ , which
will be used exclusively for the standard deviation and mean. The parameters are restricted
to the range α ∈ (0,2], β ∈ [−1,1], γ ≥ 0 and δ ∈ R. Generally γ > 0, although γ = 0 will
sometimes be used to denote a degenerate distribution concentrated at δ when it simplifies
the statement of a result. Since α and β determine the form of the distribution, they may
be considered shape parameters.

There are multiple parameterizations for stable laws and much confusion has been caused
by these different parameterizations. The variety of parameterizations is caused by a com-
bination of historical evolution, plus the numerous problems that have been analyzed using
specialized forms of the stable distributions. There are good reasons to use different pa-
rameterizations in different situations. If numerical work or fitting data is required, then
one parameterization is preferable. If simple algebraic properties of the distribution are
desired, then another is preferred. If one wants to study the analytic properties of strictly
stable laws, then yet another is useful. This section will describe three parameterizations;
in Section 3.4 eight others are described.

In most of the recent literature, the notation Sα(σ ,β ,µ) is used for the class of stable
laws. We will use a modified notation of the form S(α,β ,γ,δ ;k) for three reasons. First,
the usual notation singles out α as different and fixed. In statistical applications, all four
parameters (α,β ,γ,δ ) are unknown and need to be estimated; the new notation emphasizes
this. Second, the scale parameter is not the standard deviation (even in the Gaussian case),
and the location parameter is not generally the mean. So we use the neutral symbols γ
for the scale (not σ ) and δ for the location (not µ). And third, there should be a clear
distinction between the different parameterizations; the integer k does that. Users of stable
distributions need to state clearly what parameterization they are using, this notation makes
it explicit.

Definition 1.7 A random variable X is S(α,β ,γ,δ ;0) if

X d=
{

γ (Z−β tan πα
2 )+δ α 6= 1

γZ +δ α = 1
, (1.3)

where Z = Z(α,β ) is given by (1.2). X has characteristic function

E exp(iuX) =
{

exp
(−γα |u|α [

1+ iβ (tan πα
2 )(signu)(|γu|1−α −1)

]
+ iδu

)
α 6= 1

exp(−γ|u| [1+ iβ 2
π (signu) log(γ|u|)]+ iδu) α = 1.

(1.4)
When the distribution is standardized, i.e. scale γ = 1, and location δ = 0, the symbol
S(α,β ;0) will be used as an abbreviation for S(α,β ,1,0;0).

Definition 1.8 A random variable X is S(α,β ,γ,δ ;1) if

X d=
{

γZ +δ α 6= 1
γZ +(δ +β 2

π γ logγ) α = 1, (1.5)

where Z = Z(α,β ) is given by (1.2). X has characteristic function

E exp(iuX) =
{

exp(−γα |u|α [1− iβ (tan πα
2 )(signu)]+ iδu) α 6= 1

exp(−γ|u| [1+ iβ 2
π (signu) log |u|]+ iδu) α = 1. (1.6)
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When the distribution is standardized, i.e. scale γ = 1, and location δ = 0, the symbol
S(α,β ;1) will be used as an abbreviation for S(α,β ,1,0;1).

Note that if β = 0, then these two parameterizations are identical, it is only when β 6= 0
that the asymmetry factor (the imaginary term) becomes an issue. The symbol SαS is used
as an abbreviation for symmetric α-stable. When a scale parameter is used, SαS(γ) =
S(α,0,γ,0;0) = S(α,0,γ,0;1).

When α = 2, a S(2,0,γ,δ ;0) = S(2,0,γ,δ ;1) distribution is normal with mean δ , but
the variance is not γ2. Because of the way the characteristic function is defined above, it
is actually S(2,0,γ,δ ;0) =N(δ ,2γ2). This fact is a frequent source of confusion when one
tries to compare, e.g. stable quantiles to normal quantiles. This complication is not inherent
in the properties of stable laws; it is a consequence of the way the parameterization has been
chosen. The 2-parameterization and 3-parameterizations defined in Section 3.4 rescale to
avoid this problem, but the above scaling is standard in the literature.

The different parameterizations have caused considerable confusion. Hall (1981a) de-
scribes a “comedy of errors” caused by parameterization choices. The most common mis-
take concerns the sign of the skewness parameter when α = 1. The present author was con-
fused by the integral formulas for the density given in Theorem 2.2.3 of Zolotarev (1986)
which are stated in yet a different parameterization (Zolotarev’s (B)). Another example is
the stable random number generator of Chambers et al. (1976) which has two arguments:
α and β . Most users expect to get a S(α,β ;1) result, however, the routine actually returns
random variates with a S(α,β ;0) distribution. One book even excludes the cases β 6= 0
when α = 1.

In principle, any choice of scale and location is as good as any other choice. We rec-
ommend using the S(α,β ,γ,δ ;0) parameterization for numerical work and statistical in-
ference with stable distributions: it has the simplest form for the characteristic function
that is continuous in all parameters. See Figure 1.2 for plots of stable densities in the 0-
parameterization. It lets α and β determine the shape of the distribution, while γ and δ
determine scale and location in the standard way: if X ∼ S(α,β ,γ,δ ;0), then (X−δ )/γ ∼
S(α,β ,1,0;0). This is not true for the S(α,β ,γ,δ ;1) parameterization when α = 1.

On the other hand, if one is primarily interested in a simple form for the characteris-
tic function and nice algebraic properties, the S(α,β ,γ,δ ;1) parameterization is favored.
Because of these properties, this is the most common parameterization in use and we will
generally use it when we are proving facts about stable distributions. The main practical
disadvantage of the S(α,β ,γ,δ ;1) parameterization is that the location of the mode is un-
bounded in any neighborhood of α = 1: if X ∼ S(α,β ,γ,δ ;1) and β > 0, then the mode
of X tends to +∞ as α ↑ 1 and tends to −∞ as α ↓ 1. Moreover, the S(α,β ,γ,δ ;1) para-
meterization does not have the intuitive properties desirable in applications (continuity of
the distributions as the parameters vary, a scale and location family, etc.). See Figure 1.3
for densities in the 1-parameterization and Section 3.2.2 for more information on modes.

Since multiple parameterizations are used for stable distributions, it is perhaps worth-
while to ask if there is another parameterization where the scale and location parameter
have a more intuitive meaning. Section 3.4 defines the S(α,β ,γ,δ ;2) parameterization so
that the location parameter is at the mode and the scale parameter agrees with the standard
scale parameters in the Gaussian and Cauchy cases. While technically more cumbersome,
this parameterization may be the most intuitive for applications. In particular, it is useful
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Figure 1.2: Stable densities in the S(α,0.5,1,0;0) parameterization, α =
0.5,0.75,1,1.25,1.5.
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Figure 1.3: Stable densities in the S(α,0.5,1,0;1) parameterization, α =
0.5,0.75,1,1.25,1.5.
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Figure 1.4: Stable densities in the S(α,0.5;2) parameterization, α = 0.5,0.75,1,1.25,1.5.

in signal processing and in linear regression problems when there is skewness. Figure 1.4
shows plots of the densities in this parameterization.

A stable distribution can be represented in any one of these or other parameterizations.
For completeness, Section 3.4 lists eleven different parameterizations that can be used,
and the relationships of these to each other. We will generally use the S(α,β ,γ,δ ;0) and
S(α,β ,γ,δ ;1) parameterizations in what follows to avoid (or at least limit) confusion. In
these two parameterizations, α , β and the scale γ are always the same, but the location
parameters will have different values. The notation X ∼ S(α,β ,γ,δk;k) for k = 0,1 will be
shorthand for X ∼ S(α,β ,γ,δ0;0) and X ∼ S(α,β ,γ,δ1;1) simultaneously. In this case,
the parameters are related by (see Problem 1.9)

δ0 =
{

δ1 +βγ tan πα
2 α 6= 1

δ1 +β 2
π γ logγ α = 1 δ1 =

{
δ0−βγ tan πα

2 α 6= 1
δ0−β 2

π γ logγ α = 1 (1.7)

In particular, note that in (1.2), Z(α,β ) ∼ S(α,β ,1,β tan πα
2 ;0) = S(α,β ,1,0;1) when

α 6= 1 and Z(1,β )∼ S(1,β ,1,0;0) = S(1,β ,1,0;1) when α = 1.

1.4 Densities and distribution functions

While there are no explicit formulas for general stable densities, a lot is known about their
theoretical properties. The most basic fact is the following.

Theorem 1.9 All (non-degenerate) stable distributions are continuous distributions with
an infinitely differentiable density.
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To distinguish between the densities and cumulative distribution functions in different
parameterizations, f (x|α,β ,γ,δ ;k) will denote the density and F(x|α,β ,γ,δ ;k) will de-
note the d.f. of a S(α,β ,γ,δ ;k) distribution. When the distribution is standardized, i.e.
scale γ = 1, and location δ = 0, f (x|α,β ;k) will be used for the density, and F(x|α,β ;k)
will be used for the d.f..

Since all stable distributions are shifts and scales of some Z ∼ S(α,β ;0), we will focus
on those distributions here. The computer program STABLE, using algorithms described in
Section 3.3, was used to compute the probability density functions (pdf) and (cumulative)
distribution functions (d.f.) below to illustrate the range of shapes of these distributions.

Stable densities are supported on either the whole real line or a half line. The latter
situation can only occur when α < 1 and (β = +1 or β =−1). Precise limits are given by
the following lemma.

Lemma 1.10 The support of a stable distribution in the different parameterizations is

support f (x|α,β ,γ,δ ;0) =





[δ − γ tan πα
2 ,∞) α < 1 and β = 1

(−∞,δ + γ tan πα
2 ] α < 1 and β =−1

(−∞,+∞) otherwise

support f (x|α,β ,γ,δ ;1) =





[δ ,∞) α < 1 and β = 1
(−∞,δ ] α < 1 and β =−1
(−∞,+∞) otherwise

The constant tan πα
2 appears frequently when working with stable distributions, so it is

worth recording its behavior. Figure 1.5 shows that as α ↑ 1, tan πα
2 ↑ +∞, the expression

is undefined at α = 1, and when α ↓ 1, tan πα
2 ↓ −∞. This essential discontinuity at α = 1

is sometimes a nuisance when working with stable distributions, but here it is natural: if
|β |= 1 then as α ↑ 1, the support in Lemma 1.10 grows to R in a natural way.

Another basic fact about stable distributions is the reflection property.

Proposition 1.11 Reflection Property. For any α and β , Z ∼ S(α,β ;k), k = 0,1,2

Z(α,−β ) d=−Z(α,β ).

Therefore the density and distribution function of a Z(α,β ) random variable satisfy f (x|α,β ;k)=
f (−x|α,−β ;k) and F(x|α,β ;k) = 1−F(−x|α,−β ;k).

First consider the case when β = 0. In this case, the reflection property says f (x|α,0;k)=
f (−x|α,0;k), so the density and d.f. are symmetric around 0. Figure 1.6 shows the bell-
shaped density of symmetric stable distributions. As α decreases, three things occur to
the density: the peak gets higher, the region flanking the peak get lower, and the tails get
heavier. The d.f. plot shows how as α decreases, the tail probabilities increase.

If β > 0, then the distribution is skewed with the right tail of the distribution heavier
than the left tail: P(X > x) > P(X <−x) for large x > 0. (Here and later, statements about
the tail of a distribution will always refer to large |x|, nothing is implied about |x| small.)
When β = 1, we say the stable distribution is totally skewed to the right. By the reflection
property, the behavior of the β < 0 cases are reflections of the β > 0 ones, with left tail
being heavier. When β =−1, the distribution is totally skewed to the left.
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Figure 1.5: Plot of tan πα
2 as a function of α .

When α = 2, the distribution is a (non-standardized) normal distribution. Note that
tan πα

2 = 0 in (1.2) so the characteristic function is real and hence the distribution is al-

ways symmetric, no matter what the value of β . In symbols, Z(2,β ) d=Z(2,0). In general,
as α ↑ 2, all stable distributions get closer and closer to being symmetric and β becomes
less meaningful in applications (and harder to estimate accurately).

Figure 1.7 shows the density and d.f. when α = 1.9, with varying β , and there is little
visible difference as β varies. As α decreases, the effect of β becomes more pronounced:
the left tail gets lighter and lighter for β > 0, see Figure 1.8 (α = 1.3), Figure 1.9 (α = 0.7),
and Figure 1.10 (α = 0.1). The last figure shows that when α approaches 0, the density gets
extremely high at the peak, and the d.f. gets closer and closer to a degenerate distribution
(see Section 3.2 for more information on this topic). As Lemma 1.10 shows, the light tail
actually is 0 after some point when α < 1 and |β |= 1.

Finally, all stable densities are unimodal, but there is no known formula for the location
of the mode. However, the mode of a Z ∼ S(α,β ;0) distribution, denoted by m(α,β ), has
been numerically computed. The values of m(α,β ) are shown for β ≥ 0 in Figure 1.11
and a table of modes is given in Appendix C. By the reflection property, m(α,−β ) =
−m(α,β ). Numerically, it is also observed that P(Z > m(α,β )) > P(Z < m(α,β )) (more
mass to the right of the mode) when β > 0, P(Z > m(α,β )) = P(Z < m(α,β )) = 1/2
when β = 0, and by reflection P(Z > m(α,β )) < P(Z < m(α,β )) when β < 0 (more mass
to the left of the mode). Note that these statements are all in the 0-parameterization, not the
1-parameterization. See Section 3.2.2 for more information about modes.



14 1. Basic Properties of Univariate Stable Distributions

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

pd
f

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

alpha=0.7
alpha=1.3
alpha=1.9

Figure 1.6: Symmetric stable densities and cumulative distribution functions for Z ∼
S(α,0;0), α = 0.7,1.3,1.9.

1.5 Tail probabilities, moments and quantiles

When α = 2, the normal distribution has well understood asymptotic tail properties. Here
we give a brief discussion of the tails of non-Gaussian (α < 2) stable laws, see Section 3.5
for more information. For α < 2, stable distributions have one tail (when α < 1 and β =
±1) or both tails (all other cases) that are asymptotically power laws with heavy tails. The
statement h(x)∼ g(x) as x→ a will mean limx→a h(x)/g(x) = 1.

Theorem 1.12 Tail approximation. Let X ∼ S(α,β ,γ,δ ;0) with 0 < α < 2,−1 < β ≤ 1.
Then as x→ ∞,

P(X > x) ∼ γα cα(1+β )x−α

f (x|α,β ,γ,δ ;0) ∼ αγαcα(1+β )x−(α+1)

where cα = sin( πα
2 )Γ(α)/π . Using the reflection property, the lower tail properties are

similar: for −1≤ β < 1, as x→ ∞

P(X <−x) ∼ γαcα(1−β )x−α

f (−x|α,β ,γ,δ ;0) ∼ αγαcα(1−β )x−(α+1).

For all α < 2 and −1 < β < 1, both tail probabilities and densities are asymptotically
power laws. When β = −1, the right tail of the distribution is not asymptotically a power
law; likewise when β = 1, the left tail of the distribution is not asymptotically a power
law. The point at which the tail approximation becomes useful is a complicated issue, it
depends on both the parameterization and the parameters (α,β ,γ,δ ). See Section 3.5 for
more information on both of these issues.
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Figure 1.7: Stable densities and cumulative distribution functions for Z ∼ S(1.9,β ;0), β =
0,0.5,1.

Pareto distributions (see Problem 1.10) are a class of probability laws with upper tail
probabilities given exactly by the right hand side of Theorem 1.12. The term stable Paretian
laws is used to distinguish between the fast decay of the Gaussian law and the Pareto like
tail behavior in the α < 2 case.

One consequence of heavy tails is that not all moments exist. In most statistical prob-
lems, the first moment EX and variance Var(X) = E(X2)− (EX)2 are routinely used to
describe a distribution. However, these are not generally useful for heavy tailed distribu-
tions, because the integral expressions for these expectations may diverge. In their place,
it is sometimes useful to use fractional absolute moments: E|X |p =

∫ ∞
−∞ |x|p f (x)dx, where

p is any real number. Some review on moments and fractional moments is given in Ap-
pendix A. Problem 1.11 shows that for 0 < α < 2, E|X |p is finite for 0 < p < α , and that
E|X |p = +∞ for p ≥ α . Explicit formulas for moments of strictly stable laws are given in
Section 3.6.

Thus, when 0 < α < 2, E|X |2 = EX2 = +∞ and stable distributions do not have finite
second moments or variances. This fact causes some to immediately dismiss stable distri-
butions as being irrelevant to any practical problem. Section 2.11 discusses this in more
detail. When 1 < α ≤ 2, E|X | < ∞ and the mean of X is given below. On the other hand,
when α ≤ 1, E|X |= +∞, so means are undefined.

Proposition 1.13 When 1 < α ≤ 2, the mean of X ∼ S(α,β ,γ,δk;k) for k = 0,1 is

µ = EX = δ1 = δ0−βγ tan πα
2 .

Consider what happens to the mean of X ∼ S(α,β ;0) as α ↓ 1. Even though the mode of
the distribution stays close to 0, it has a mean of µ = β tan πα

2 . When β = 0, the distribution
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Figure 1.8: Stable densities and cumulative distribution functions for Z ∼ S(1.3,β ;0), β =
0,0.5,1.

is symmetric and the mean is always 0. When β > 0, the mean tends to +∞ because while
both tails are getting heavier, the right tail is heavier than the left. By reflection, the β <
0 case has µ ↓ −∞. Finally, when α reaches 1, the tails are too heavy for the integral
EX =

∫ ∞
−∞ x f (x)dx to converge. In contrast, a S(α,β ;1) distribution keeps the mean at 0

by shifting the whole distribution by an increasing amount as α ↓ 1. For example, when
1 < α < 2, Theorem 3.15 shows that F(0|α,1;1) = 1/α , which converges up to 1 as α ↓ 1.
In these cases, most of the probability is to the left of zero, and only a tiny amount is to
the right of zero, yet the mean is still zero because of the very slow decay of the right tail.
The behavior is essentially the same for any β > 0. A S(α,β ;2) distribution keeps the
mode exactly at 0, and the mean as a function of (α,β ) is continuous, like the mean of a
S(α,β ;0) distribution.

Note that the skewness parameter β is not the same thing as the classical skewness pa-
rameter. The latter is undefined for every non-Gaussian stable distribution because neither
the third moment or the variance exist. Likewise, the kurtosis is undefined, because the
fourth moment is undefined for every non-Gaussian stable distribution.

It is sometimes useful to consider non-integer moments of stable distributions. In Sec-
tion 3.6 it will be shown that for 0 < p < α , the p-th absolute moment exists: E|X |p < ∞.
Such moments are sometimes called fractional lower order moments (FLOM). When X is
strictly stable there is an explicit form for such moments. Such moments can be used as a
measure of dispersion of a stable distribution, and are used in some estimation schemes.

Tables of standard normal quantiles or percentiles are given in most basic probability and
statistic books. Let zλ be the λ th quantile, i.e. the z value for which the standard normal
distribution has lower tail probability λ , i.e. P(Z < zλ ) = λ . The value z0.975 = 1.96 is com-
monly used: for X ∼N(µ,σ2), the 0.025th quantile is µ−1.96σ and the 0.975th quantile is
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Figure 1.9: Stable densities and cumulative distribution functions for Z ∼ S(0.7,β ;0), β =
0,0.5,1.

µ + 1.96σ . Quantiles are used to quantify risk. For example, in a Gaussian/normal model
for the price of an asset, the interval from µ − 1.96σ to µ + 1.96σ contains 95% of the
distribution of the asset price.

Quantiles of the standard stable distributions are used in the same way. The difficulty
is that there are different quantiles for every value of α and β . The symbol zλ (α,β ) will
be used for the λ th quantile of a S(α,β ;0) distribution: P(Z < zλ (α,β )) = λ . The easiest
way to find these values is to use the program STABLE. Less accurately, one can use
the tabulated values in Appendix B and interpolate on the α and β values. Appendix B
shows selected quantiles for α=0.1, 0.2,. . ., 1.9, 1.95, 1.99, 2.0 and β=0, 0.1, 0.2,. . ., 0.9, 1.
(Reflection can be used for negative beta: by Proposition 1.11, zλ (α,β ) = z1−λ (α,−β )).

We caution the reader about two ways that stable quantiles are different from normal
quantiles. First, if the distribution is not symmetric, i.e. β 6= 0, then the quantiles are not
symmetric. Second, the way the quantiles scale depend on what parameterization is being
used. In the S(α,β ,γ,δ ;0) parameterization, it is straightforward; in other parameteriza-
tions one has to either convert to the S(α,β ,γ,δ ;0) parameterization using (1.7), or scale
and shift according to the definition of each parameterization. These issues are illustrated
in the following examples.

Example 1.14 Find the 5th and 95th quantiles for X ∼S(1.3,0.5,2,7;0). From Appendix B,
the 5th quantile is z0.05(1.3,0.5) =−2.355 and the 95th quantile is z0.95(1.3,0.5) = +5.333
for a standardized S(1.3,0.5,1,0;0) distribution. So the corresponding quantiles for X are
δ −2.355γ = 2.289 and δ +5.333γ = 17.666. 2

Example 1.15 If X ∼ S(1.3,0.5,2,7;1), then using the previous example, the 5th and
95th quantiles are γ(−2.355)+ (δ + βγ tan πα

2 ) = 0.327 and γ(5.333)+ (δ + βγ tan πα
2 ) =
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Figure 1.10: Stable densities and cumulative distribution functions for Z∼S(0.1,β ;0), β =
0,0.5,1. Note that both the horizontal and vertical scales are very different from Figures 1.7
- 1.9.

15.704. Alternatively, S(1.3,0.5,2,7;1) = S(1.3,0.5,2,5.037;0) by (1.7), so the 5th and
95th quantiles are 2(−2.355)+5.037 = 0.327 and 2(5.333)+5.037 = 15.704. 2

1.6 Sums of stable random variables

A basic property of stable laws is that sums of α-stable random variables are α-stable. In
the independent case, the exact parameters of the sums are given below. As always, the re-
sults depend on the parameterization used. In these results it is essential that the summands
all have the same α , as Problem 1.12 shows that otherwise the sum will not be stable. Sec-
tion 13.10 discusses this issue briefly. When the summands are dependent, the sum is stable
but the precise statement is more difficult and depends on the exact dependence structure;
this is explained in Chapter 5.

Proposition 1.16 The S(α,β ,γ,δ ;0) parameterization has the following properties.
(a) If X ∼ S(α,β ,γ,δ ;0), then for any a 6= 0, b ∈ R,

aX +b∼ S(α,(signa)β , |a|γ,aδ +b;0).

(b) The characteristic functions, densities and distribution functions are jointly continuous
in all four parameters (α,γ,β ,δ ) and in x.
(c) If X1 ∼ S(α,β1,γ1,δ1;0) and X2 ∼ S(α,β2,γ2,δ2;0) are independent, then X1 + X2 ∼
S(α,β ,γ,δ ;0) where

β =
β1γα

1 +β2γα
2

γα
1 + γα

2
, γα = γα

1 + γα
2 ,
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Figure 1.11: The location of the mode of a S(α,β ;0) density.

δ =





δ1 +δ2 +(tan πα
2 ) [βγ−β1γ1−β2γ2] α 6= 1

δ1 +δ2 + 2
π [βγ logγ−β1γ1 logγ1−β2γ2 logγ2] α = 1.

The formula γα = γα
1 + γα

2 in (c) is the generalization of the rule for adding variances
of independent random variables: σ2 = σ2

1 +σ2
2 . It holds for both parameterizations. Note

that one adds the α th power of the scale parameters, not the scale parameters themselves.

Proposition 1.17 The S(α,β ,γ,δ ;1) parameterization has the following properties.
(a) If X ∼ S(α,β ,γ,δ ;1), then for any a 6= 0, b ∈ R,

aX +b∼
{

S(α,(signa)β , |a|γ,aδ +b;1) α 6= 1
S(1,(signa)β , |a|γ,aδ +b− 2

π βγa log |a|;1) α = 1.

(b) The characteristic functions, densities and distribution functions are continuous away
from α = 1, but discontinuous in any neighborhood of α = 1.

(c) If X1 ∼ S(α,β1,γ1,δ1;1) and X2 ∼ S(α,β2,γ2,δ2;1) are independent, then X1 + X2 ∼
S(α,β ,γ,δ ;1) where

β =
β1γα

1 +β2γα
2

γα
1 + γα

2
, γα = γα

1 + γα
2 , δ = δ1 +δ2.

The corresponding results for the S(α,β ,γ,δ ;2) parameterization are given in Proposi-
tion 3.40.

Part (a) of the above results shows that γ and δ are standard scale and location parame-
ters in the S(α,β ,γ,δ ;0) parameterization, but not in the S(α,β ,γ,δ ;1) parameterization
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when α = 1. In contrast, part (b) shows that the location parameter δ of a sum is the sum of
the location parameters δ1 +δ2 only in the S(α,β ,γ,δ ;1) parameterization. Unfortunately
there is no parameterization that has both properties.

By induction (see Problem 1.13), one gets formulas for sums of n stable random vari-
ables: for X j ∼ S(α,β j,γ j,δ j;k), j = 1,2, . . . ,n independent and arbitrary w1, . . . ,wn, the
sum

w1X1 +w2X2 + · · ·+wnXn ∼ S(α,β ,γ,δ ;k) (1.8)

where

γα =
n

∑
j=1
|w jγ j|α

β =
∑n

j=1 β j(signw j)|w jγ j|α
γα

δ =





∑ j w jδ j + tan πα
2

(
βγ−∑ j β jw jγ j

)
k = 0,α 6= 1

∑ j w jδ j + 2
π

(
βγ logγ−∑ j β jw jγ j log |w jγ j|

)
k = 0,α = 1

∑ j w jδ j k = 1,α 6= 1
∑ j w jδ j− 2

π ∑ j β jw jγ j log |w j| k = 1,α = 1 .

Note that if β j = 0 for all j, then β = 0 and δ = ∑ j w jδ j. An important case is the scal-
ing property for stable random variables: when the terms are independent and identically
distributed, say X j ∼ S(α,β ,γ,δ ;k), then

X1 + · · ·+Xn ∼ S
(

α,β ,n1/αγ ,δn;k
)

(1.9)

where

δn =

{
nδ + γβ tan πα

2 (n1/α −n) k = 0,α 6= 1
nδ + γβ 2

π n logn k = 0,α = 1
nδ k = 1 .

This is a restatement of Definition 1.5: the shape of the sum of n terms is the same as the
original shape. We stress that no other distribution has this property.

With the above properties of linear combinations of stable random variables, we can
characterize strict stability.

Proposition 1.18 Let X ∼ S(α,β ,γ,δk;k) for k = 0,1.
(a) If α 6= 1, then X is strictly stable if and only if δ1 = δ0−βγ tan πα

2 = 0.
(b) If α = 1, then X is strictly stable if and only if β = 0.

Here there is an essential difference between the α = 1 case and all other cases. When
α = 1, only the symmetric case is strictly stable and in that case the location parameter δ
can be anything. In contrast, when α 6= 1, any β can be strictly stable, as long as the location
parameter is chosen correctly. This can be rephrased as follows: any stable distribution with
α 6= 1 can be made strictly stable by shifting; when α = 1, a symmetric stable distribution
with any shift is strictly stable and no shift can make a nonsymmetric 1-stable distribution
strictly stable.

In addition to the basic properties described above, there are other linear and nonlinear
properties of stable random variables given in Section 3.8.
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1.7 Simulation

In this section U,U1,U2 will be used to denote independent Uniform(0,1) random variables.
For a few special cases, there are simple ways to generate stable random variables.

For the normal case, Problem 1.15 shows

X1 = µ +σ
√
−2logU1 cos2πU2 (1.10)

X2 = µ +σ
√
−2logU1 sin2πU2

give two independent N(µ,σ2) random variables. This is known as the Box-Muller algo-
rithm.

For the Cauchy case, Problem 1.16 shows

X = γ tan(π(U−1/2))+δ (1.11)

is Cauchy(γ,δ ).
For the Lévy case, Problem 1.17 shows

X = γ
1

Z2 +δ (1.12)

is Lévy(γ,δ ) if Z ∼ N(0,1).
In the general case, the following result of Chambers et al. (1976) gives a method for

simulating any stable random variate.

Theorem 1.19 Simulating stable random variables Let Θ and W be independent with Θ
uniformly distributed on (− π

2 ,
π
2 ), W exponentially distributed with mean 1, 0 < α ≤ 2.

(a) The symmetric random variable

Z =





sinαΘ
(cosΘ)1/α

[
cos((α−1)Θ)

W

](1−α)/α
α 6= 1

tanΘ α = 1.

has a S(α,0;0) = S(α,0;1) distribution.
(b) In the nonsymmetric case, for any −1 ≤ β ≤ 1, define θ0 = arctan(β tan(πα/2))/α
when α 6= 1. Then

Z =





sinα(θ0 +Θ)
(cosαθ0 cosΘ)1/α

[
cos(αθ0 +(α−1)Θ)

W

](1−α)/α
α 6= 1

2
π

[
( π

2 +βΘ) tanΘ−β log
(

π
2 W cosΘ

π
2 +βΘ

)]
α = 1.

has a S(α,β ;1) distribution.

It is easy to get Θ and W from independent Uniform(0,1) random variables U1 and
U2: set Θ = π(U1 − 1

2) and W = − logU2. To simulate stable random variables with ar-
bitrary shift and scale, (1.3) is used for the 0-parameterization and (1.5) is used for the 1-
parameterization. Since there are numerical problems evaluating the expressions involved
when α is near 1, the STABLE program uses an algebraic rearrangement of the formula.
Section 3.3.3 gives a proof of this formula and a discussion of the numerical implementa-
tion of Chambers, Mallows and Stuck.
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1.8 Generalized Central Limit Theorem and Domains of
Attraction

The classical Central Limit Theorem says that the normalized sum of independent, identical
terms with a finite variance converges to a normal distribution. To be more precise, let
X1,X2,X3, . . . be independent identically distributed random variables with mean µ and
variance σ2. The classical Central Limit Theorem states that the sample mean Xn = (X1 +
· · ·+Xn)/n will have

Xn−µ
σ/
√

n
d−→Z ∼ N(0,1) as n→ ∞.

To match the notation in what follows, this can be rewritten as

an(X1 + · · ·+Xn)−bn
d−→Z ∼ N(0,1) as n→ ∞, (1.13)

where an = 1/(σ
√

n) and bn =
√

nµ/σ .
The Generalized Central Limit Theorem shows that if the finite variance assumption is

dropped, the only possible resulting limits are stable.

Theorem 1.20 Generalized Central Limit Theorem A nondegenerate random variable Z
is α-stable for some 0 < α ≤ 2 if and only if there is an independent, identically distributed
sequence of random variables X1, X2,X3, . . . and constants an > 0, bn ∈ R with

an(X1 + · · ·Xn)−bn
d−→Z.

The following definition is useful in discussing convergence of normalized sums.

Definition 1.21 A random variable X is in the domain of attraction of Z if and only if there
exists constants an > 0, bn ∈ R with

an(X1 + · · ·Xn)−bn
d−→Z,

where X1,X2,X3, . . . are independent identically distributed copies of X . DA(Z) is the set of
all random variables that are in the domain of attraction of Z.

Theorem 1.20 says that the only possible nondegenerate distributions with a domain of
attraction are stable. Section 3.13 proves the Generalized Central Limit Theorem, charac-
terizes the distributions in DA(Z) in terms of their tail probabilities, and gives information
about the norming constants an and bn. For example, suppose X is a random variable with
tail probabilities that satisfy xαP(X > x) → c+ and xα P(X < −x) → c− as x → ∞, with
c+ +c− > 0 and 1 < α < 2. Then µ = EX must be finite and Theorem 3.54 shows that the
analog of (1.13) is

an(X1 + · · ·+Xn)−bn
d−→Z ∼ S(α,β ,1,0;1) as n→ ∞,

when an =((2Γ(α)sin( πα
2 ))/(π(c+ + c−)))1/α n−1/α , bn = nanµ and β =(c+−c−)/(c++

c−). In this case, the rate at which of the tail probabilities of X decay determines the index
α and the relative weights of the right and left tail determine the skewness β .
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1.9 Problems

Problem 1.1 Show directly using the convolution formula (A.1) that the normal distribu-
tions are stable. Show that a2 + b2 = c2 in (1.1), so α = 2 and conclude that N(µ,σ2) =
S

(
2,0,σ/

√
2,µ;0

)
= S

(
2,0,σ/

√
2,µ;1

)
.

Problem 1.2 Show directly using the convolution formula that the Cauchy distributions
are stable. Show that a + b = c in (1.1), so α = 1 and conclude that Cauchy(γ,δ ) =
S(1,0,γ,δ ;0) = S(1,0,γ,δ ;1). (Hint: You will need to use partial fractions.)

Problem 1.3 Show directly using the convolution formula that Lévy distributions are sta-
ble. Show that a1/2 + b1/2 = c1/2 in (1.1), so α = 1/2 and conclude that Lévy(γ,δ ) =
S(1/2,1,γ,δ ;1)= S(1/2,1,γ,δ + γ;0). (Hint: Use substitution and

∫ ∞
1 exp(−r/y)/

√
1− rdr =√πyexp(−1/y).) (Solution: WLOG, δ = 0, γ = 1. Substitute t = (2x/y)−1, to get inte-

gral over −1 < t < 1 Use symmetry to reduce to twice the integral from 0 to 1. Substitute
r = 1/(1− t2) and use hint. In general, use inverse Gaussian distribution.)

Problem 1.4 Show that the cumulative distribution function of a Cauchy distribution is
F(x|1,0,γ,δ ;0) = F(x|1,0,γ,δ ;1) = (1/2)+ arctan((x−δ )/γ)/π . (Hint: differentiate.)

Problem 1.5 Show that the cumulative distribution function of a Lévy distribution X ∼
S(1/2,1,γ,δ ;1) is, for x > δ

F(x|1/2,1,γ,δ ;1) = 2
(

1−Φ
(√

γ/(x−δ )
))

,

where Φ(x) is the d.f. of a standard normal distribution. (Hint: differentiate.)

Problem 1.6 What is wrong with the following argument? If X1, . . . ,Xn ∼Gamma(α,β )
are independent, then X1 + · · ·+Xn ∼Gamma(nα,β ), so gamma distributions must be stable
distributions.

Problem 1.7 Use the characteristic function (1.2) to show that Z(α,−β ) d=−Z(α,β ). This
proves Proposition 1.11.

Problem 1.8 Use the definitions of the different parameterizations and the characteristic
function (1.2) to show that the characteristic functions in (1.4) and (1.6) are correct.

Problem 1.9 Show that the conversions between the parameterizations in (1.7) are correct.
(Use either the characteristic functions in (1.4) and (1.6) or the definitions of the parame-
terizations in terms of Z(α,β ).)

Problem 1.10 A Pareto(α,c) distribution has density f (x) = αcαx−(1+α), x > c. Show that
if p < α , then EX p exists and find its value, but if p≥ α , then EX p = ∞.

Problem 1.11 Extend the previous problem to show that if X is any random variable with
a bounded density for which both left and right tail densities are asymptotically equivalent
to Pareto(α,c), then E|X |p is finite if p < α and infinite if p ≥ α . (The left tail is defined
to be asymptotically Pareto if f (x)∼ αcα |x|−(1+α) as x→−∞.)



24 1. Basic Properties of Univariate Stable Distributions

Problem 1.12 Show that the sum of two independent stable random variables with dif-
ferent αs is not stable. Section 13.10 gives a brief discussion of what happens when you
combine different indices of stability.

Problem 1.13 Derive (1.8) and (1.9) for the sums of independent α-stable r.v.

Problem 1.14 Simulate n = 1,000 uniform random variables and let s2
k be the sample

variance of the first k values. A “running sample variance” plot is a graph of (k,s2
k),

k = 2,3,4, . . . ,n. Repeat the process with normal random variables, Cauchy random vari-
ables and Pareto random variables (see Section 13.1 for a method of simulating Pareto
distributions) with α = 0.5,1,1.5. Contrast the behavior of s2

k .

Problem 1.15 Show directly that (1.10) gives independent N(µ ,σ2). Theorem 1.19 also
works when α = 2 to generate normal random variates, but it requires two uniforms to
generate one normal, whereas (1.10) generates two normals from two uniforms.

Problem 1.16 Use the cumulative distribution function for a Cauchy(γ,δ ) distribution
from Problem 1.4 to prove (1.11).

Problem 1.17 Use Problem 1.5 to prove (1.12).


